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SUMMARY

The scaled boundary finite-element method (SBFEM) by Tao et al. (Comput. Methods Appl. Mech. Engrg
2007; 197:232–242) is only applicable for wave scattering problems by a structure of homogenous material.
In this paper, the SBFEM is extended to deal with the interaction of water waves and porous offshore
structure with a partially solid wall or opening. The cylindrical structure is considered as a circular cylinder
of anisotropic material in the form of variable porosity. A central feature of the newly extended method
is that the non-homogenous term caused by the complex configuration of the structure is processed by
introducing a variable porous-effect parameter G. This leads to the final scaled boundary finite-element
equation is still homogenous and can be solved in a similar manner. The modified SBFEM thus remains a
semi-analytical fundamental-solution-less method. Numerical experiments in water wave interaction with
a typical coastal/offshore structure—a cylinder with a partially solid wall or opening attest to the efficacy
and accuracy of the proposed approach. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to reduce the direct wave impact and resonance from occurring, coastal and offshore
structures are often constructed with protective porous layers. Owing to its scientific and engineering
significance, wave motion through a porous structure has attracted considerable attention. For
many years, there have been a widespread applications of porous structures in coastal and offshore
engineering. For example, porous breakwaters are commonly constructed to protect coasts and
harbours; The concentric porous cylinder system—Ekofisk gravity offshore structure was built
with an porous exterior layer to protect interior column in the North Sea (see Figure 1). However,
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Figure 1. Ekofisk gravity structure (Courtesy ConocoPhillps).

the understanding of the phenomenon is still far from complete. Among many issues, the ability
of a coastal and ocean engineer to predict wave transmission and diffraction, hence the wave
elevation, wave forces and the stability of the structures, plays a central role in the protection of
the structures [1].

Chwang [2] proposed a linearized porous-wavemaker theory to analyse small amplitude surface
waves produced by horizontal oscillations of a porous vertical plate. The theory was later applied
to analyse surface waves generated by a piston-type porous wavemaker near the end of a semi-
infinitely long channel of constant depth [3]. Several studies on the physical phenomenon of wave
trapping due to a porous plate or a concentric porous cylinder system using the porous-wavemaker
theory were reported (e.g. [4, 5]).

Dalrymple et al. [6] studied the reflection and transmission of a wave train at an oblique angle of
incidence by an infinitely long porous breakwater. Yu and Chwang [7] performed extensive study
on the transmission characteristics of waves past a porous structure. The wave behaviour within
the porous medium was also investigated. It was found that there is an optimum thickness for a
porous structure beyond which any further increase of the thickness may not lead to an appre-
ciable improvement in reducing its transmission and reflection characteristics. Yu and Chwang [8]
employed the boundary integral method to study wave diffraction by a horizontal porous plate
submerged at a distance below the free surface in a fluid of constant depth. Wang and Ren [9]
also studied the performance of a flexible and porous breakwater. Additional related work can be
found in the review article of Chwang and Chan [1].

One of the noticeable limitations in the previous studies is the two-dimensional plane wave
assumption. Wind-generated waves in real oceans are much better represented by short-crested
waves (3D) than by plane waves (2D) [10, 11]. Short-crested waves commonly arise from the
oblique interaction of two travelling plane waves or intersecting swell waves, from the reflection
of waves at non-normal incidence off a vertical seawall or a breakwater, as well as from diffraction
about the surface boundaries of a structure of finite length. Such a 3D waves are of paramount
importance in coastal and offshore structure design.

Recently, a semi-analytical method, called scaled boundary finite-element method (SBFEM)
for solving linear partial differential equations has found successful applications to soil–structure

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:96–118
DOI: 10.1002/fld



98 H. SONG AND L. TAO

interaction problems. The SBFEM method was proposed by Song and Wolf [12] and system-
atically described by Wolf [13]. Combining the distinct advantages of the finite-element (FEM)
and boundary-element methods (BEM), only the structure boundary is discretized with surface
finite elements. This, in turn, transforms the governing partial differential equations to a set of
ordinary differential equations, and solves them analytically. The method represents singularities
and unbounded domains accurately and efficiently when compared with the complete FEM and
requires no fundamental solution as needed by the BEM. Fewer elements are required to obtain
very accurate results [13].

Only recently the SBFEM has been applied to wave diffraction in which the radiation condition
at infinity is required to be satisfied by the scattered waves. Li et al. [14] solved the problem of
plane wave diffraction by a vertical cylinder using SBFEM. Similar to the approach of Wolf [13]
in obtaining a solution for soil–structure interaction, Li et al. [14] adopted an algebraic series to
obtain the final solution. However, for low-frequency waves, the series hardly converges to the
exact solution.

Tao et al. [15] developed a modified SBFEM model and applied it to solve short-crested wave
interaction with a circular cylinder. Instead of using a power series as proposed in the original
SBFEM, Tao et al. [15] chose Hankel function as a base function to solve the 2D Helmholtz
equation in the unbounded domain. As a direct consequence of such a modification, the radial
differential equation is solved fully analytically in all frequency ranges. Without relying on any
other numerical schemes, the semi-analytical model for the short-crested wave diffraction by a
single circular cylinder is shown to reproduce the analytical solution for all physical properties
including wave run-up, effective inertia and drag coefficients, and total force very accurately at
very low computational cost.

However, the methodology proposed by Tao et al. [15] is only suitable for a closed circular
cylinder. If a cylinder is not closed, e.g. has openings, the final scaled boundary finite-element
equation (SBFEE) becomes non-homogeneous, rising much difficulty in the solution procedure.
The goal of this paper is to solve this physical problem in the same efficient way as presented in
[15]. By introducing a porous-effect parameter G (Chwang’s parameter), the structure is treated
as a nonuniform porous cylinder. We will show that the final SBFEE derived is still homogeneous
and can be solved in a similar way as proposed in our previous work [15]. The modified SBFEM
thus remains a semi-analytical fundamental-solution-less method. The newly developed approach
is then applied to solve short-crested wave interaction with a cylindrical structure of variable
porosity in the circumferential direction. Convergence tests are given to demonstrate the accuracy
and efficiency of the numerical model. Only a few finite elements discretized on the circumference
of the cylinder are shown to be sufficient to obtain accurate results. Detailed numerical results on
wave forces and surface elevations over a broad range of incident wave parameters and structure
configuration including the cylinder radius, structural porosity, opening angle and location on the
wave elevation and forces are examined in detail.

2. THEORETICAL FORMULATION OF THE BOUNDARY VALUE PROBLEM (BVP)

We consider a monochromatic short-crested wave train propagating in the direction of the positive
x axis. A vertical porous cylindrical structure extends from the sea bottom to above the free surface
of the ocean along the z axis. The origin is placed at the centre of the cylinder on the mean water
surface (Figure 2). The fluid domain is divided into two regions, an interior region �1 and a region
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Figure 2. Definition sketch of wave interaction with a porous cylindrical structure.

outside the cylinder �2. The following notations have been used in the paper: � j = total velocity
potential, �I = velocity potential of incident wave, �S = velocity potential of scattered wave, k=
total wave number, kx = wave number in x direction, ky = wave number in y direction, �= wave
frequency, h= water depth, A= amplitude of incident wave, a= cylinder radius, t= time, �=
mass density of water and g= gravitational acceleration. The subscripts j ( j=1,2) denote the
physical parameters in the region � j ( j =1,2).

Assuming the fluid to be inviscid, incompressible and the flow to be irrotational, the fluid motion
can be described by a velocity potential � j satisfying the Laplace equation

∇2� j =0 in � j (1)

subject to the combined-free surface boundary condition

� j,t t +g� j,z =0 at z=0 (2)

and the bottom condition

� j,z =0 at z=−h (3)

where the comma in the subscript designates partial derivative with respect to the variable following
the comma.
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The velocity potentials can be decomposed by separating the vertical variable z and the time t
from each component as

� j (x, y, z, t)=� j (x, y)Z(z)e−i�t in � j (4)

�I
2(x, y, z, t)=�I

2(x, y)Z(z)e−i�t in �2 (5)

�S
2 (x, y, z, t)=�S

2 (x, y)Z(z)e−i�t in �2 (6)

where

Z(z)= coshk(z+h)

coshkh
(7)

This procedure leads to the sea bottom condition being automatically satisfied, while the
linearized free surface boundary condition is satisfied using the following dispersion relationship:

�2=gk tanhkh (8)

The total velocity potential in the outer region �2 is given as a linear sum of the scattered wave
potential and the incident wave potential

�2=�I
2+�S

2 , �2=�I
2+�S

2 in �2 (9)

Taylor [16] showed that the fluid flow passing through the porous boundary can be essentially
assumed to obey Darcy’s law if the boundary is made of fine pores. Hence, the porous flow velocity
is linearly proportional to the pressure difference between the two sides of the porous boundary,
and the boundary condition on porous cylinder can be expressed as [2]

�1,n =−�2,n = iG(�)k(�1−�2) on r =a (10)

where G(�) is a measure of the porous effect, named as Chwang’s parameter. For a cylinder of
nonuniform porosity, G(�) varies along the circumferential direction. For special cases, G=0,∞
represent a cylinder with a partial solid wall and a partial opening, respectively [2].

The BVP becomes two dimensional at the free surface. The function �S
2 (x, y) in the unbounded

domain �2 is governed by the Helmholtz equation with the boundary condition at the interface of
fluid and porous cylinder, and the radiation condition at infinity, namely the Sommerfeld condition
as follows:

∇2�S
2 +k2�S

2 =0 in �2 (11)

�S
2,n =−iG(�)k(�1−�S

2 −�I
2)−�I

2,n on r =a (12)

lim
kr→∞(kr)1/2(�S

2,r − ik�S
2 )=0 in �2 (13)

where r is the radial axis, and i=√−1.
The function �1(x, y) in the bounded domain �1 is governed by the Helmholtz equation with

the boundary condition at the interface of fluid and porous cylinder at r =a:

∇2�1+k2�1=0 in �1 (14)
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�1,n = iG(�)k(�1−�S
2 −�I

2) on r =a (15)

The velocity potential of the linear short-crested incident wave travelling principally in the
positive x direction is given by the real part of [17]

�I =− igA

�
Z(z)ei(kx x−�t) cos(ky y) in �2 (16)

Equations (11)–(15) constitute two sets of the governing equation and boundary conditions for
the diffraction of short-crested waves by a vertical porous cylindrical structure, corresponding to
BVPs in a bounded domain and an unbounded domain, respectively. After obtaining �S

2 ,�2 and
�1 by solving the above BVPs, the velocity, free surface elevation and the dynamic pressure can
be calculated, respectively, from

v j =∇� j (17)

� j =
i�

g
� j (18)

p j =−�� j,t (19)

3. SCALED BOUNDARY TRANSFORMATION

In this section, �1 and �S
2 will both be denoted as � for brevity, and the region � j will be denoted

as �. If the velocity boundary is defined by �v , we have

�,n = v̄n on �v (20)

where the overbar denotes a prescribed value.
The FEM requires the weighted residuals of the governing equation to be zero. Hence, Equations

(11), (14) and (20) are multiplied by a weighting function w and integrated over the flow domain
and the boundary. Performing integration by parts, the resulting equation becomes∫

�
∇Tw∇�d�−

∫
�

wk2�d�−
∮

�
wv̄n d�=0 (21)

SBFEM defines the domain � by scaling a single piecewise-smooth curve S relative to a scaling
centre (x0, y0), which is chosen at the cylinder centre in this case (see Figure 3). The circumferential
coordinate s is anticlockwise along the curve S and the normalized radial coordinate � is a scaling
factor, defined as 1 at curve S and 0 at the scaling centre. The whole solution domain � is in
the range of �0����1 and s0�s�s1. The two straight sections s=s0 and s=s1 are called side-
faces. They coincide if the curve S is closed. For bounded domain, �0=0 and �1=1, whereas for
unbounded domain, �0=1 and �1=∞. Therefore, the Cartesian coordinates are transformed to
the scaled boundary coordinate � and s with the scaling equations

x= x0+�xs(s), y= y0+�ys(s) (22)

By employing SBFEM, an approximate solution of � is sought as

�A(�,s)=N(s)a(�) (23)
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Figure 3. The coordinate definition of SBFEM.

where N(s) is the shape function, the vector a(�) is analogous to the nodal values same as in
FEM. The radial function a j (�) represents the variation of the wave potential in the radial axis �
at each node j , and the shape function N(s) interpolates between the nodal potential values in the
circumferential axis s.

Performing the scaled boundary transformation [15], we have

E0�
2a(�),��+(E0+ET

1 −E1)�a(�),�−E2a(�)+k2�2M0a(�)=�Fs(�) (24)

subject to the boundary conditions

E0�0a(�0),�+ET
1a(�0)=−

∫
S
N(s)T(v̄n(�0,s))�0 ds (25)

E0�1a(�1),�+ET
1a(�1)=

∫
S
N(s)T(v̄n(�1,s))�1 ds (26)

where

E0=
∫
S
B1(s)

TB1(s)|J |ds (27)

E1=
∫
S
B2(s)

TB1(s)|J |ds (28)

E2=
∫
S
B2(s)

TB2(s)|J |ds (29)

M0=
∫
S
N(s)TN(s)|J |ds (30)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:96–118
DOI: 10.1002/fld



SBFEM MODEL FOR WAVE INTERACTION 103

Fs(�)=N(s0)
T(−v̄n(�,s0))|J (s0)|+N(s1)

T(−v̄n(�,s1))|J (s1)| (31)

B1(s)=b1(s)N(s), B2(s)=b2(s)N(s),s (32)

b1(s)= 1

|J |

{
ys(s),s

−xs(s),s

}
, b2(s)= 1

|J |

{−ys(s)

xs(s)

}
(33)

and |J | is the Jacobian at the boundary

|J |= xs(s)ys(s),s− ys(s)xs(s),s (34)

Equation (24) is the so-called SBFEE, which is non-homogeneous because of the term Fs(�)

arising from the structure configuration, e.g. cylinder with an opening. In the present approach, by
introducing the variable porous parameter, the cylindrical structure can then be treated as a closed
cylinder of variable porosity. Thus, the side-faces in the scaled boundary finite element coordinate
system coincide. Since the flow across the side-faces is equal and opposite, the term Fs(�) vanishes.
Therefore, the final governing equation, Equation (24), is a homogeneous second-order ordinary
matrix differential equation in terms of matrix.

Boundary conditions, Equations (12) and (13) or (15), are weakened in the form of Equations (25)
and (26), respectively, indicating the relationship between the integrated nodal flow on the boundary
and the velocity potentials of the nodes. For the wave diffraction problem in the unbounded region
�2,�0=1 on the boundary of porous cylinder and �1=+∞ at infinity. For the BVP in the bounded
region �1,�0=0 and �1=1.

4. SOLUTION PROCEDURE

For a circular cylinder, we have

xs(s)=a cos(s/a), ys(s)=a sin(s/a) (35)

From Equations (22), (33), (34), (32) and (27)–(28), xs(s),s, ys(s),s,b1(s),b2(s), |J |,B1(s),
B2(s),E0,E1,E2 and M0 can be calculated accordingly. The following relationships hold:

E1=0 ·I, E−1
0 M0=a2I (36)

E0= 1

a

∫
S
N(s)TN(s)ds (37)

where I is the identity matrix of rank m.
Using Equation (36), pre-multiplying both sides of Equation (24) by E−1

0 and simplifying, we
have

�2a(�),��+�a(�),�−E−1
0 E2a(�)+�2a(�)=0 (38)

where

�=ka� (39)
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4.1. Solution for unbounded domain �2

Equation (38) is the matrix form of Bessel’s differential equation. Considering the Sommerfeld
radiation condition equation (13), here we select Hr j (�)T j as a base solution of Equation (38) in
the unbounded region �2.

The solution for a2(�) is then expressed in the series form

a2(�)=
m∑
j=1

c j Hr j (�)T j =TH(�)C (40)

in which T j are vectors of rank m,c j are coefficients, Hr j (�) are the Hankel functions of the first
kind, and

T=[T1,T2, . . . ,Tm] (41)

H(�)=diag[Hr1(ka�),Hr2(ka�), . . . ,Hrm (ka�)] (42)

C=[c1,c2, . . . ,cm]T (43)

where ‘diag’ denotes a diagonal matrix with the elements in the square brackets on the main
diagonal.

Substituting Equation (40) into (38), and using the following properties of Hankel function:

�2H ′′
r j (�)=−�2Hr j (�)+�Hr j+1(�)−r j Hr j (�)+r2j Hr j (�) (44)

�H ′
r j (�)=−�Hr j+1(�)+r j Hr j (�) (45)

where the prime and the double prime denote the first and second derivatives with respect to the
argument �, respectively, we have

m∑
j=1

(E−1
0 E2−r2j I)T j ·c j Hr j (�)=0 (46)

For any c j Hr j (�), Equation (46) yields

(E−1
0 E2−r2j I)T j =0 (47)

Let 	 j be the eigenvalues of E−1
0 E2, then r j =

√
	 j , and T j are the eigenvectors of E−1

0 E2.
Since the Sommerfeld radiation condition (13) has been satisfied by the Hankel functions, we

now only consider the body boundary condition (25) of the circular cylinder

E0ka
m∑
j=1

c j H
′
r j (ka)T j =−

[∫
S
N(s)TN(s)ds

]
v̄S2n (48)

where v̄S2n is the vector of nodal normal velocity of scattered wave in region �2 on the body
boundary.
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4.2. Solution for bounded domain �1

Similar approach is applied to the region �1. Assume

a1(�)=
m∑
j=1

c1j Jr j (�)T j =TJ(�)C1 (49)

where c1j are coefficients, Jr j (�) are the Bessel functions of the first kind, and

C1=[c11,c12, . . . ,c1m]T (50)

J(�)=diag[Jr1(ka�), Jr2(ka�), . . . , Jrm (ka�)] (51)

Again if 	 j are the eigenvalues of E−1
0 E2, then r j =

√
	 j , and T is the eigenvector of E−1

0 E2.
Applying boundary condition on the porous cylinder equation (26), we have

E0kaTJ′
aC

1=
[∫

S
N(s)TN(s)ds

]
v̄1n (52)

where v̄1n is the vector of nodal total normal velocity in region �1 on the body boundary of porous
cylinder.

Combining Equations (10), (20), (23), (37), (40), (48), (49) and (52), and noting

v̄I2n+ v̄S2n = v̄2n =−v̄1n (53)

where v̄I2n is the vector of nodal normal velocity of incident wave in the region �2 on the body
boundary of the porous cylinder, a1(�) and a2(�) are solved as

a1(�)=TJ(�)W−1(T−1āI2+HahT−1v̄I2n/k) (54)

a2(�)=THh(�)(J′
aW

−1T−1āI2+H−1
ah VW

−1HahT−1v̄I2n/k) (55)

where

V= iT−1G−1TJ′
a+Ja (56)

W=V−HahJ′
a (57)

and

Ja =diag[Jr1(ka), Jr2(ka), . . . , Jrm (ka)] (58)

J′
a =diag[J ′

r1(ka), J ′
r2(ka), . . . , J ′

rm (ka)] (59)

Hh(�)=diag[Hr1(ka�)/H ′
r1(ka),Hr2(ka�)/H ′

r2(ka), . . . ,Hrm (ka�)/H ′
rm (ka)] (60)

Hah =diag[Hr1(ka)/H ′
r1(ka),Hr2(ka)/H ′

r2(ka), . . . ,Hrm (ka)/H ′
rm (ka)] (61)

G is a diagonal matrix where the value on the diagonal designates the porosity G in the corre-
sponding elements.

Using Equations (4), (5), (16), (20) and (23), v̄I2n and āI2 can be easily determined on the porous
cylinder boundary. From Equations (6), (9), (23), (54) and (55), the approximation of velocity
potential in both region �1 and region �2 can be obtained.
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All the other physical properties of engineering interest including velocity, surface elevation
and pressure can now be determined based on the velocity potentials by Equations (17)–(19).
The total force per unit length on the cylinder in the u(u= x, y) direction is then calculated as

dFu
dz

=−a
∫ 2


0
p ·cos(�)d�=2
aPu(kx ,ky,k,a) ·�gA ·Z(z)e−i�t (62)

where the function Pu(kx ,ky,k,a) is the dimensionless parameter of dFu/dz without the term
�gA ·Z(z)e−i�t .

The function Pu(kx ,ky,k,a) determines the first-order total horizontal force in the u direction
on the cylinder, Fu , which can be obtained by integrating Equations (62) with respect to z

Fu =
∫ 0

−h

dFu
dz

dz=2
aPu(kx ,ky,k,a) ·�gAe−i�t ·tanh(kh)/k (63)

The total moment about an axis parallel to the y-axis passing through the bottom of the cylinder is

My =
∫ 0

−h
(z+h)

dFx
dz

dz=2
aPx (kx ,ky,k,a) ·�gAe−i�t · f (kh)/k2 (64)

Mx =−
∫ 0

−h
(z+h)

dFy

dz
dz=2
aPy(kx ,ky,k,a) ·�gAe−i�t · f (kh)/k2 (65)

where

f (kh)=[kh tanh(kh)+sech(kh)−1] (66)

It can be concluded from Equations (63)–(65) that only the functions Px (kx ,ky,k,a) and
Py(kx ,ky,k,a) need to be discussed.

5. VALIDATION OF SBFEM MODEL

As a first step to ensure the convergence of the solution to be found, it is essential to examine
the detailed relationship between the number of elements required on the cylinder surface and
ka. The SBFEM model described in the previous section is then further validated with theoretical
solutions [18]. For the physical problem with symmetric properties, only half the cylinder needs
to be discretized. In this paper, the cylinder circumference is discretized with three-node quadratic
elements (see Figure 4).

Figure 5 shows the convergence of the surface elevation at the origin and wave forces in relation
to ka for a cylinder with uniform porosity (G0=1). It is clearly seen in Figure 5(a) that even 2
elements lead to very accurate results of elevations for ka up to 1.8, while 4 and 6 elements are
required to produce valid solutions in the range of ka�5.2 and ka�8.4, respectively. As can be
seen in Figure 5(b), the convergence zone of ka for wave force calculation is notably broader.

Figure 6 shows surface elevation at the origin (left) and wave forces (right) versus non-
dimensional radius ka for a cylinder with nonuniform porosity (G0=1 and G1=10) along the
circumferential direction. Three types of the configuration are considered, i.e. the region of
the partial porosity G1 lies in (a) [
/2,3
/2]; (b) [3
/4,5
/4]; (c) [7
/8,9
/8], respectively.
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Figure 4. Scaled boundary finite element mesh for a porous cylindrical structure.

Again, only half of the cylinder surface needs to be discretized. As shown in Figures 6(a) and
(d), even 4 elements are seen to produce very accurate results of surface elevation and wave force
for ka up to 4. A general trend that more elements are required for increasing ka are clearly
seen in the figures. For both surface elevation and wave force calculations, Figure 6 shows that
the difference between the present SBFEM solutions with 8 elements and analytical solutions is
indistinguishable for ka up to 10 for all three configurations presented.

For the physical problems of non-symmetric configurations, whole cylinder needs to be
discretized along the circumferential direction, thus the number of required elements doubles.
Figure 7 shows the convergence of elevation and wave forces for a cylinder with a partial opening
in [3
/4,
] interaction with the incoming short-crested waves of equal wave numbers in two
perpendicular directions. The two different porosities are G1=+∞ in [3
/4,
] and G0=1 in the
rest of the cylinder. It can be seen in Figure 7 that 16 elements (corresponding to 8 elements in
the half cylinder) are adequate to achieve relatively high accuracy for calculation of both elevation
and wave forces in the range of ka�10. For elevation, 8 elements (corresponding to 4 elements
in the half cylinder) exhibit excellent agreement with the analytical solutions until ka=5.3. Since
the physical problem is no longer symmetric to the x axis, wave force in the y direction comes
forth with rather smaller magnitude compared with the inline force.

6. NUMERICAL RESULTS AND DISCUSSION

6.1. Surface elevation

6.1.1. Influence of ka. The equi-amplitude (left) and equi-phase (right) contours for incident short-
crested wave having the wave number kx =ky =√

2/2m−1, interaction with a porous cylinder
(G0=1) with a partial opening at 7/8
<�<9/8
, for a=2,3,4m are shown in Figure 8. The
thick lines in phase contours represent changes from 
 to −
. It can be seen clearly that the wave
patterns inside the porous cylinder become more complex as a increases, with increases in density
of both the amplitude and phase contours. This is mainly due to more physical space for the waves
transmitted into the interior region to develop. Amphidromic points come forth when the bounded
area is adequately large to form them.

6.1.2. Influence of G0. The equi-amplitude (left) and equi-phase (right) contours for incident
short-crested wave (kx =ky =√

2/2m−1) interaction with a cylinder (a=4m) of three different
porosities G0=0.5,1,10, with a partial opening at 7/8
<�<9/8
, are shown in Figure 9. As can
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Figure 5. Surface elevation at the origin and wave forces versus ka for short-crested wave (kx =ky)
interaction with a porous cylinder of uniform porosity G0=1.

be seen from the figure, the wave pattern is more complex as the porosity G0 is smaller due to
the stronger interaction of the waves reflected by the internal surface of the cylinder. As porosity
G0 increases, the effect of diffraction weakens and the cylinder becomes transparent gradually,
leading to a wave pattern similar to that of a progressive wave.

6.1.3. Influence of opening angle. Figure 10 shows the equi-amplitude (left) and equi-phase (right)
contours for short-crested wave (kx =ky =√

2/2m−1) interaction with a porous cylinder (a=4m
andG0=1) with a partial opening centred at �=
 for three different opening angles �=
/4,
/2,
.
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Figure 6. Surface elevation at the origin (left) and wave forces (right) versus ka for short-crested wave
(kx =ky) interaction with a porous cylinder of nonuniform porosity G0=1 and G1=10.
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interaction with a porous cylinder (G0=1) with a partial opening at [3
/4,
].

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:96–118
DOI: 10.1002/fld



SBFEM MODEL FOR WAVE INTERACTION 111

x

y

-2 -1 0 1 2
-2

-1

0

1

2

ka = 2

0.6 1.00.8

0.2

0.6

0.4

0.81.0

x

y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

ka = 3

0.60.8

0.4

0.2

0.6

0.4

x

y

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

ka = 4

0.8

0.8

0.2
0.2

0.4
0.6

0.81.01.0

0.4 0.6

0.8

x

y

-2 -1 0 1 2
-2

-1

0

1

2

ka =

π/20 π/4-π/4

2

x

y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

ka =

-π/2 0

3π/4

-π/4

3

±π

π/4 π/2

x

y

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

ka =

-π/2
0

-3π/4

4

π/4
±π

3π/4
π/2

-3π/4 π/4 π/2 3π/4

-3π/4

-π/2

-π/2

-π/4 0

±π

Figure 8. Equi-amplitude (left) and equi-phase (right) contours for short-crested wave (kx =ky =√
2/2m−1)

interaction with a porous cylinder (G0=1) with a partial opening at 7/8
<�<9/8
 (a=2,3,4m).

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:96–118
DOI: 10.1002/fld



112 H. SONG AND L. TAO

x

y

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

G

0.8

0.8

0.2

0.2

0.4 0.6

0.6
1.21.0

0.4

0.6

0.8

0 = 0.5

0.6

1.0

1.0

x

y

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

G

0.8

0.8

0.2
0.2

0.4
0.6

0.81.01.0

0.4 0.6

0.8

0 = 1

x

y

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

G

0.8

0.2
0.2

0.4
0.6

1.01.0

0.4
0.6

0.8

0 = 10

x

y

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

G

-π/2
0

-3π/4

0 = 0.5

π/4

±π

3π/4π/2

-3π/4 π/4 π/2 3π/4

-3π/4

-π/2

-π/4 0

±π

x

y

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

G

-π/2
0

-3π/4

0 = 1

π/4
±π

3π/4
π/2

-3π/4 π/4 π/2 3π/4

-3π/4

-π/2

-π/2

-π/4 0

±π

x

y

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

G

-π/2

0

-3π/4

0 = 10

π/4

3π/4
π/2

-3π/4 π/4 π/2 3π/4

-3π/4

-π/2

π/2

-π/4 0

±π
-π/2

±π

Figure 9. Equi-amplitude (left) and equi-phase (right) contours for short-crested wave (kx =ky =√
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The amplitudes in the inline directions are seen varying rapidly, while the transverse values change
slowly for these three opening angles. It appears that the opening angle has rather limited effect
on the equi-phase contour patterns.

6.1.4. Influence of opening location. The equi-amplitude (left) and equi-phase (right) contours for
short-crested wave (kx =ky =√

2/2m−1) interaction with a cylinder (a=4m and G0=1) with a
partial opening (�=
/4) at three different locations along the cylinder circumference direction,
�=
,
/2,0 respectively, are shown in Figure 11. It is seen that surface elevation in the interior
region reduces as the opening location shift away from the incident wave direction, indicating
more effective protection. Such an effect of increased protection by rearranging openings away
from incident wave direction is expected to be more profound for a cylinder with low porosity.

6.2. Wave forces

6.2.1. Influence of G0. The influence of ka on wave forces experienced by a cylinder with a
partial opening at �=
 and opening angle �=
/4 is also investigated for the same wave condition,
kx =ky =√

2/2m−1. Three cases of different porosities G0=0.5,1,10, respectively, are calculated
and the results are presented in Figure 12. For different G0, a similar pattern of wave forces
oscillating with ka is clearly observed. The porosity effect parameter is seen to have significant
impact on the wave forces imposed on the cylinder, i.e. |Px | is markedly lower as G0 increases
indicating increased wave transmission. As ka increases, peak and trough attenuation is clearly
evident for different G0.

6.2.2. Influence of opening angle. The variations of the wave forces on a cylinder with a partial
opening at �=
 by the incident short-crested wave of equal wave numbers (kx =ky) versus ka are
shown in Figure 13 for G0=1. The results plotted in Figure 13 are for three different values of
opening angle �=
/4,
/2,
, respectively. It can be seen that the wave forces fluctuate and peak
attenuation is evident. Significant reduction in wave force fluctuation is clearly seen as the opening
angle increases. For a cylinder of porosity G0=1 with an opening of half circle (�=
), Figure 13
shows that the wave forces rather smoothly decrease with ka after an initial rapid increase to a
peak value.

6.2.3. Influence of opening location. Figure 14 shows wave forces on a porous cylinder (G0=1)
with a partial opening (�=
/4) at five different locations �=0,
/4,
/2,3
/4,
, respectively.
Again, the incident short-crested wave is of equal wave numbers, i.e. kx =ky . It can be seen clearly
that the opening location is very sensitive at low ka to the inline forces but much less influence
as ka�2. As shown in Figure 14, trough attenuation is no longer seen as ka increases, while
peak attenuation is found for all � values. The magnitude of the transverse wave forces shown
in Figure 14 is rather small and becomes virtually zero for �=0 and 
 since the corresponding
configurations being symmetric to the x direction.

It is worthnoting that, the computational times (recorded on a 2GHz Pentium IV PC and
MATLAB 7.1) of the present SBFEM solutions are very small. For all cases presented in this paper,
accurate results are obtained in less than 3 s, a clear demonstration that it significantly outperforms
any current FEM or BEM for wave diffraction problems. Such computational efficiency and
accuracy ensure great potential of direct application of the present model to many engineering
problems especially in ocean engineering.
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Figure 11. Equi-amplitude (left) and equi-phase (right) contours for short-crested wave
(kx =ky =√

2/2m−1) interaction with a porous cylinder (G0=1) with a partial opening
(�=
/4) centred at �=
,
/2,0 (a=4m).
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7. CONCLUSIONS

The versatility of the newly developed semi-analytical SBFEM is demonstrated in this paper in
considering the interaction of short-crested waves with a cylindrical structure with an partial solid
wall or opening. By introducing a porous-effect parameter, the final SBFEE has been successfully
transformed from non-homogeneous to homogeneous, and further solved in the frame work of
the SBFEM. With no additional approximations being introduced, the SBFEM thus remains a
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semi-analytical fundamental-solution-less approach, but capable of dealing with much more
complex structural configurations. Only the body boundary is discretized with surface finite
elements. Excellent computational efficiency and accuracy of the SBFEM model have been
demonstrated, as the governing equations are solved analytically in the radial direction. The
influence of structural configuration including cylinder radius, porosity, opening angle and opening
location is studied and the results in terms of the wave forces and surface elevations are presented.
The results presented here should be found useful in the design of coastal and ocean structures.
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